COMPUTATIONAL INTELLIGENCE

September 2014 – November 2014 Siegfried Nijssen

Leiden Institute of Advanced Computer Science e-mail: s.nijssen@liacs.leidenuniv.nl Katholieke Universiteit Leuven e-mail: siegfried.nijssen@cs.kuleuven.be

Artificial Intelligence

- Aims to develop intelligent agents that perceive their environment and take actions that maximize their chances of success
- Requires solving several challenges:
 - Knowledge representation: how does an agent represent its knowledge and perceptions?
 - Reasoning, planning: how does an agent deduce an action based on its perceptions and its knowledge?
 - Learning: how does an agent update its knowledge based on its perceptions?

Artificial Intelligence

Planning

Actions

Perceptions

Knowledge

Perceptions

Learning

Computational Intelligence

- Computational intelligence traditionally studies a subset of three AI techniques:
 - Knowledge representation: fuzzy logic & fuzzy set theory
 - Reasoning, planning: Evolutionary (genetic) algorithms
 - Learning: Neural networks

Knowledge representation: Fuzzy logic

- Goal: represent "fuzzy" knowledge of an agent
- Traditional logic can be used to represent crisp rules:

if *A* is true then do *B*

Boolean in → Boolean out

Fuzzy logic represents fuzzy rules:

if A is true to a high degree / A is likely then try to make B true to a high degree / make B likely

Number in → Number out

Fuzzy logic is less sensitive to errors / noise

Knowledge representation: Fuzzy logic

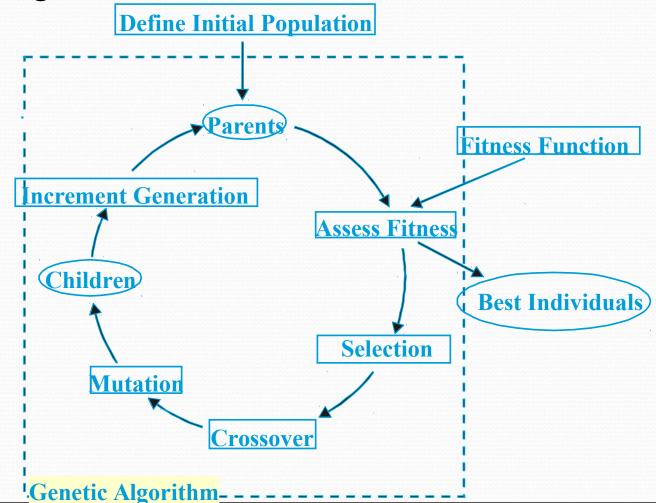
Used to build control systems

if A is warm to a high degree then B should be turned down to a high degree

Used to calculate the overall quality (fitness) of a (hypothetical) situation

if *A* is high then customer is likely good if *B* is high then customer is likely good if *C* is high and *B* is not high then customer is likely good

how good would the situation be in which *A* and *C* are high, and *B* is low?


• Research challenges: how to interpret fuzzy rules? What are sensible strategies for calculating an output, given inputs? How to make the intuition formal?

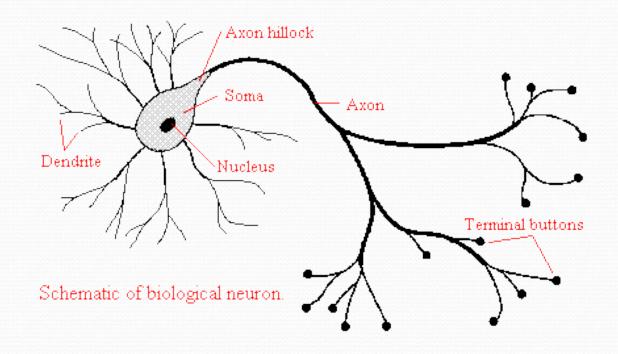
Planning / optimization: Evolutionary Algorithms

- Goal of an evolutionary algorithm:
 to find a plan that optimizes a given fitness function
 - the fitness could be defined by means of fuzzy logic, but does not have to be
- Example: the traveling salesman problem
 - Given a number of cities, distances between the cities
 - **Find** an order in which to visit the cities such that the total distance traveled is minimized

Evolutionary Algorithms

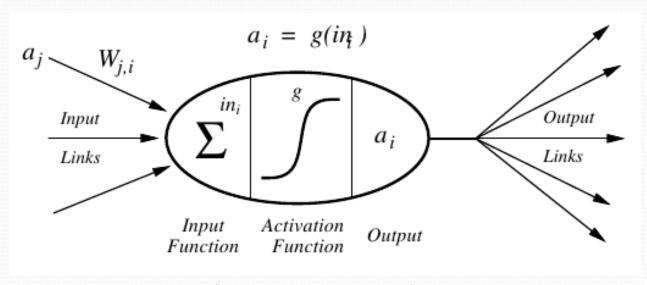
 Method: evolve populations of solutions by mimicking evolution in nature

Nature-inspired optimization


- Evolutionary algorithms
- Particle swarm optimization
- Artificial ants

All are
robust optimization algorithms:
if the fitness function changes, solutions usually adapt
relatively easily

• Research challenge: which algorithm finds a good solution as quickly as possible?


Learning: Neural Networks

Inspired by biological nervous systems

Learning: Neural Networks

Artificial neuron

(Neuron/Unit)

 Also a neural network represents knowledge, and is often used used to transform input to output

Learning: Neural Networks

- Different types of neural networks:
 - feed-forward neural networks
 - self-organizing maps
 - recurrent networks
 - radial basis function networks
 - fuzzy-neural networks

Research challenge: how to learn a neural network? What is a good architecture for a neural network?

Computational Intelligence

- Knowledge representation: fuzzy logic & fuzzy set theory
- You haven't followed a basic course on logic
- Reasoning, planning: Evolutionary (genetic) algorithms
- Learning:Neural networks

- Basis already discussed in course artificial intelligence
- Also in course on data mining
 - Advanced topics require strong mathematics

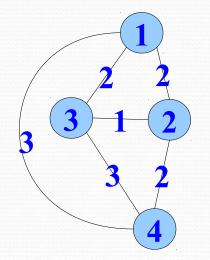
- Knowledge representation & planning: traditional logic, SAT solvers, constraint programming Computational Intelligence
- Knowledge representation:

Reasoning, planning: Evolutionary (genetic) algorithms

fuzzy logic & fuzzy set theory

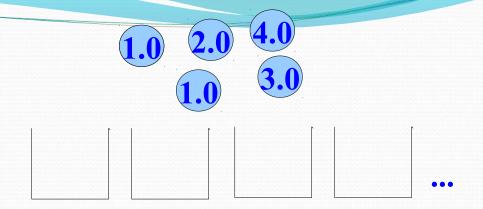
Learning: Neural networks

Central Theme


- Artificial intelligence inspired methods for
 - Knowledge representation:
 - Logic
 - Fuzzy logic
 - Optimization & planning:
 - SAT solving
 - Constraint programming
 - Local search
 - Evolutionary algorithms

Template of a Constraint Optimization Problem

- Given:
 - ...
- Find:
 - •
- Such that:
 - ... is minimal/maximal
 - ... is satisfied


Example 1: Traveling Salesmen

- Given:
 - N cities
 - D[i,j] distances between cities
- Find:
 - an assignment p[i] for i=1..N with p[i] in 1..N, indicating that at step i city p[i] is visited
- Such that:
 - all cities are visited exactly once
 - D[p[1],p[2]]+D[p[2],p[3]]+...+D[p[n-1],p[n]]+D[p[n],p[1]]is minimal

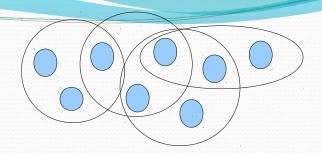
Example 2: Binpacking

- Given:
 - *N* items with sizes $a_1,...,a_N$
 - A bin size *V*
- Find:
 - an assignment p[i] for i=1..N to positive integers, indicating that item i is put in bin p[i]
- Such that:
 - $\max_i p[i]$ is **minimal** (number of bins is small)
 - $\sum_{p[i]=j} a_i \le V$ for all bins j (no more than weight V in each bin)

Each bin: 4.0

Example 3: Knapsack

- Given:
 - *N* items with sizes $a_1,...,a_N$, prices $p_1,...,p_N$
 - A maximum weight W
- Find:
 - a subset of items *I*
- Such that:
 - $\sum p_i$ is **maximal** (very valuable knapsack)
 - $\sum_{i \in I}^{i \in I} a_i \leq W$ (knapsack with low weight)

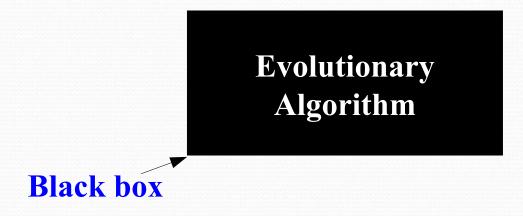


Example 3b: Unbounded Knapsack

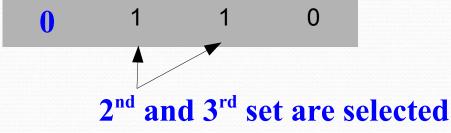
- Given:
 - *N* possible items with weights a_{ν} ..., a_{N} , prices p_{ν} ..., p_{N}
 - A weight threshold *W*
- Find:
 - an integer w[i] for each item i
- Such that:
 - $\sum_{i=1}^{N} w[i]p_i$ is **maximal** (very valuable knapsack)
 - $\sum_{i=1}^{\infty} w[i]a_i \leq W$ (knapsack with low weight)

Portfolio Optimization

Example 4: Set Cover

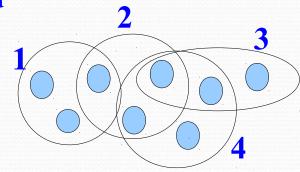

- Given:
 - *N* sets, each a subset of the universe $U=\{1,2,...,m\}$
- Find:
 - A subset *S* of the *N* given sets, i.e. each set in *S* equals one of the given sets, but not all given sets need to be selected.
- Such that:
 - |*S*| is **minimal** (small subset)
 - $\bigcup_{S \in \mathbf{S}} S = U$ (each element is covered)

How to solve these problems?


- Many such problems are hard
 - "NP hard" → no polynomial algorithm is known
- Two solutions:
 - Exact: require exponential time in the worst case
 - Inexact: polynomial, but may not find the best solutions
- Both types of solutions have been studied in artificial intelligence, algorithms, and operations research

- Distinguishing feature of AI approaches: they aim to be "intelligent" and generic by solving problems (semi-)automatically
- Idea: solve a problem in two stages:
 - 1. Describe the problem in a concise way in a computer language.
 - 2. Run a general algorithm (a "solver" or an "inference engine") on this description to solve the problem.
 - i.e., the programmer does **not** write an imperative algorithm.

- Example search: evolutionary algorithm
 - Step 1:
 - Specify what the individuals in a population look like
 - Specify the quality of an individual (fitness)
 - Step 2: (Ideal situation)
 - Run an existing evolutionary algorithm without modification



- Example problem: set cover
- Representation of an individual in a bitstring:

- Fitness: (assuming small=very fit)
 - Number of sets selected?
 - Number of sets selected +
 (number of uncovered elements) x w

Very large weight

- What about optimal solutions?
- Alternative *general* systems that take a *declarative* input specification and find optimal solutions:
 - Constraint programming
 - SAT solvers
 - ILP solver

• Which programming language to use?

• C++ ?

Java ?

Prolog ?

Python

Why Python?

- Scripting language with a high level of abstraction
 - Implements features also seen in functional and logic programming
- Well-supported language with many libraries available
- Quickly gaining popularity in the scientific community (Coursera)

Why Python?

	2011	2012		2011	2012
R	45.1%	52.5%	Unix shell	10.4%	14.7%
Python	24.6%	36.1%	C/C++	12.8%	14.3%
SQL	32.3%	32.1%	MATLAB	14.6%	13.1%
Java	24.4%	24.1%	Perl	7.9%	9.0%
SAS	21.2%	19.7%	Hadoop-based	6.1%	6.7%

Computational Intelligence

- Basic course in Python
- Knowledge representation & planning: traditional logic, SAT solvers, constraint programming
- Knowledge representation: fuzzy logic & fuzzy set theory
- Reasoning, planning: Evolutionary (genetic) algorithms
- Learning: Neural networks

Course overview

- 13 lectures
- Lectures & practicums will often be combined

week	Date	Monda	ay		Tuesda		W	Wednesday					Thursday							Fri	Friday									
nr	Mo	1 2	3 4	5 6	7 8	1 2	3 4	5	6	78	1	2	3 4	5	6	7 8	1 2	3	4	5	6	7	8	1	2	3 4	5	6	7 8	1
36	1 Sep		HCI	opening	Ac. Year						T			\top				┲	HCI	1		T		T			T	inaug.	Stud. ver.	1
37	8 Sep			DaMi					С	l/pr Cl	┑				CI	pr CI	1	┰	HCI	1		T		T						1
38	15 Sep		HCI	DaMi					С	l/pr Cl	1						1		HCI	1				T						٦
39	22 Sep		HCI	DaMi					С	l/pr Cl				(CI	pr CI			HCI	1										1
40	29 Sep		HCI	DaMi					С	l/pr Cl					CI	pr CI			HCI			Т				Relief	of L	_eider	1	1
41	6 Oct		HCI	DaMi															HCI	Т		Т		Г						٦
42	13 Oct		HCI	DaMi					С	l/pr Cl				(CI	pr CI			HCI	1				Π						1
43	20 Oct		HCI	DaMi					С	l/pr Cl				(CI	pr Cl			HCI			Г		Г						7
44	27 Oct		HCI	DaMi		Fin pr	Fin						Fin		С	I/pr CI			HCI							Fin				1
45	3 Nov		HCI	DaMi	t Fir	Fin pr	Fin				Т		Fin		С	I/pr CI			HCI					Π		Fin				7
46	10 Nov		HCI	DaMi	t Fir	Fin pr	Fin				Т		Fin		С	I/pr CI			HCI			Г		Г		Fin				7
47	17 Nov		HCI	DaMi	t Fir	Fin pr	Fin		Ba	ıch			Fin					_	HCI							Fin				1
48	24 Nov		HCI	DaMi	t Fir	Fin pr	Fin						Fin		Cl	everinga		_	HCI					П		Fin]
49	1 Dec		HCI	DaMi	t Fir	Fin pr	Fin		Ba	ıch			Fin						HCI							Fin]
50	8 Dec		HCI	DaMi	t Fir	Fin pr	Fin		Ba	ıch			Fin													Fin				⅃
51	15 Dec											T Fi	n																	┚
52	22 Dec			THO	CI																									
1	29 Dec																													
2	5 Jan			T Dal	Mi						\perp	р	CI					\perp								T CI				1
3	12 Jan										\perp			Ba	ach			\perp						L						╝
4	19 Jan										丄							\perp		\perp		\perp		L						┙
5	26 Jan													Ba	ach															┚

Final mark obtained 70% from a written exam and 30% from practicum assignments